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Abstract 

The probability distributions of X-ray intensities in 
fiber diffraction are different from those for single 
crystals (Wilson statistics) because of the cylindrical 
averaging of the diffraction data. Stubbs [Acta Cryst. 
(1989), A45, 254-258] has recently determined the 
intensity distributions on a fiber diffraction pattern 
for a fixed number of overlapping Fourier-Bessel 
terms. Some properties of the amplitude and intensity 
distributions are derived here. It is shown that the 
amplitudes and intensities are approximately nor- 
mally distributed (the distributions being asymptoti- 
cally normal with increasing number of Fourier- 
Bessel terms). Improved approximations using an 
Edgeworth series are derived. Other statistical proper- 
ties and some asymptotic expansions are also derived, 
and normalization of fiber diffraction amplitudes is 
discussed. The accuracies of the normal approxima- 
tions are illustrated for particular fiber structures, and 
possible applications of intensity statistics in fiber 
diffraction are discussed. 
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fiber diffraction pattern. 
normalized amplitude. 
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nth moment of ~ (~). 
mean of ~J (#). 
variance of ~J (~). 
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~(~) .  
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characteristic functions for 
~d and #. 
nth cumulant for #. 
normal approximations to 
t'm(~) and pro(#). 
Edgeworth series approxi- 
mations to Pm(~d) and 
P,.(#). 
normal approximations to 
Q,.(~) and Q,.(#). 
normal approximations to 
~o,,,(y) and ~m(Y). 

I. Introduction 

Statistical descriptions of X-ray amplitudes have 
played important roles in many aspects of crystal- 
lography. The most remarkable, of course, is the use 
of conditional distributions of phases in direct 
methods for phase determination (Hauptman & 
Karle, 1953; Giacovazzo, 1980; Bricogne, 1984). 
Other applications include detection of symmetry 
(Wilson, 1949), analysis of twinning (Yeates, 1988), 
and estimation of R factors (Wilson, 1950; Luzatti, 
1952). The initial application of such ideas was a 
study of the distribution of intensities diffracted by 
a crystal (Wilson, 1949). 

X-ray fiber diffraction is a variant of traditional 
crystallography that can be used to determine struc- 
tures of molecules that prefer to form fibers rather 
than single crystals (Millane, 1988). In a fiber speci- 
men, the diffracting particles are randomly rotated so 
that the diffraction pattern is cylindrically averaged. 
Intensity distributions in fiber diffraction are there- 
fore different from those in traditional crystallogra- 
phy. Although intensity statistics have not yet been 
utilized in fiber diffraction, it may be possible to 
develop useful applications. The first step in this 
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direction was taken by Stubbs (1989) who derived 
the distribution of amplitudes on a fiber diffraction 
pattern as a function of the number of overlapping 
Fourier-Bessel structure factors. This is essentially 
an extension of Wilson statistics to the fiber diffraction 
case. These results have been used to estimate largest 
likely R factors in fiber diffraction analyses (Stubbs, 
1989; Millane, 1989a, b, 1990). 

Some properties of the distributions of amplitudes 
(and intensities) on a fiber diffraction pattern are 
examined here. In particular, it is shown that the 
diffracted amplitudes and intensities are approxi- 
mately normally distributed. Some other statistical 
parameters and asymptotic properties are also 
derived. The insights and simplifications afforded by 
normal distributions, as well as the other properties 
derived, may be useful in developing applications of 
intensity statistics in fiber diffraction. 

Wilson statistics, relevant aspects of fiber diffrac- 
tion theory and intensity distributions in fiber diffrac- 
tion derived by Stubbs (1989) are briefly reviewed in 
the next section. Properties of the distributions of 
intensities and amplitudes in fiber diffraction are 
derived in §§ 3 and 4 respectively. Possible normaliz- 
ations of fiber diffraction amplitudes are discussed in 
the next section. The accuracy of approximate normal 
distributions for typical fiber diffraction problems is 
discussed in § 6. Possible applications of this work 
and concluding remarks are made in the final section. 

2. Preliminaries 

Wilson (1949) showed that the probability density 
function for structure amplitudes P(F) diffracted by 
a centric crystal is 

P(F)=(2/Tre)U2exp(-F2/2e)  (1) 

and the corresponding density for the intensities, 
P(1), is therefore 

P(I) = (21re)-u21-1/2 exp ( - I / 2 e )  (2) 

where 

e = ~ f 2  (3) 
J 

and the fj are the atomic scattering factors. Note that 
the coefficient in (1) is incorrect in the Abstract of 
Wilson (1949). The densities for a non-centric crystal 
are 

P ( F )  = (2/e  ) F exp ( -  F2/e ) (4) 

P(I)  = e - '  exp ( - I / e ) .  (5) 

These distributions apply in a thin resolution shell 
where e is constant. 

In fiber diffraction, the diffracting particles are 
randomly rotated about their long axes and the 
diffracted intensity I~(R) at a reciprocal-space cylin- 

drical radius R on layer line l is given by (Franklin 
& Klug, 1955) 

I,( R) = ~. IG,,( R)I z (6) 
!1 

where the sum includes only those n that satisfy the 
helix selection rule (Cochran, Crick & Vand, 1952), 
the G,,~(R) (sometimes abbreviated to G,)  are the 
complex Fourier-Bessel structure factors (Klug, 
Crick & Wyckoff, 1958) given by 

G.,( R ) = ~.fJ,,(27rRrj) exp [ i(-n~oj + 21rlzJ c)], (7) 
J 

J,(x) is the nth-order Bessel function of the first kind, 
and (rj, q~j, zj) are the cylindrical polar coordinates 
o f the j th  atom. Although the sum in (6) is in principle 
infinite, it is in practice finite as a result of the behavior 
of Bessel functions (Makowski, 1982). It is convenient 
to define an m-dimensional vector r~ whose com- 
ponents are the real and imaginary parts of the G, 
terms (of significant value) that contribute to the 
diffracted intensity at a particular position in 
reciprocal space (Namba & Stubbs, 1987). In general, 
therefore, m is twice the number of terms, but if any 
terms are real, m will be less than this (Stubbs, 1989; 
Millane 1989a). The quantity m is sometimes referred 
to as the number of degrees of freedom of ~3. The 
measured amplitude at a particular position in 
reciprocal space is therefore equal to the length ~3 of 
(~ and the intensity 5~ is 5~ = ~d 2, or 

m/2 

~= ~ =  2 ~, (8) 
i=1 i=1 

where the ~i are the components of ~ and the ~i are 
the intensities that contribute to 3~. Stubbs (1989) 
showed that, for a particular value of m, the probabil- 
ity density functions for ~3 and ~ are given by [refer- 
ring to Millane (1989a) and utilizing the gamma 
function F (x) ] 

P, , (~ )=[2e -" / z /F (m/2 ) ]~  m-~ e x p ( - ~ 2 / e )  (9) 

P,,(3~)=[e-"/Z/F(m/2)]~ "/2-' exp ( -5~ / e )  (10) 

where 

2 2 2 r e=Y.f~J, ,(  ~rR .i). (11) 
J 

P,.(~) and Pm(~¢) are shown as the solid lines in Figs. 
1 and 2 for some typical values of m (for all examples 
in this paper e = 1). 

Comparison of (9) and (10) with (1)-(5) shows 
that the m = 2  case is identical (except for the 
definition of e) to the non-centrosymmetric single- 
crystal case, and the m = 1 case is similar, although 
not identical, to the centrosymmetric case. The latter 
difference is due to a halving of the number of 
independent atoms for a centrosymmetric crystal that 
does not occur in the fiber diffraction case. 
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3.  I n t e n s i t y  d i s t r i b u t i o n s  

The density P,, (,~) is a g a m m a  o r  X 2 type of  distribu- 
tion (Abramowitz  & Stegun, 1972, chap. 26). Straight- 
forward calculat ions show that the nth moment  tim, 
is given by 

f l , , , = F ( m / 2 + n ) / F ( m / 2 ) .  (12) 

0.3 
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Fig. 1. Probability density functions for the intensity on a fiber 
diffraction pattern for different values of m. The numbers adja- 
cent to the curves indicate the value of m. The different curves 
are the exact densities P,,(,9) ( ), normal approximations 
/3,.(,9) ( - - - )  and Edgeworth series approximations /3,.(`9) 
(...). 
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Fig. 2. Probability density functions for the amplitude on a fiber 
diffraction pattern for different values of m. ̂ (a) Exact densities 
P,,(~3) ( ), normal approximations P"(~) ( - - - )  and 
Edgeworth series approximations P"(~3) (...). (b) Curves are 
the same as in (a) except that the more accurate approximations 
/3"(~3) and P',(~3) are used. 

2 The mean  v,, =/3,,,1, variance z,, = v,.2, and third 
central moment ,  v,,3, are given by 

and 

v , ,=em/2  (13) 
2 r,,, = e2m/2 (14) 

Urn3 = earn. (15) 

The cumulat ive distr ibution function Q,,(..¢) is given 
by 

Q, , (# )=[1 / I ' (m/2)]y (m/2 ,~C/e )  (16) 

where y ( a , x )  is the incomplete  g a m m a  funct ion 
(Abramowitz  & Stegun, 1972, equation 6.5.2), and is 
shown as the solid lines in Fig. 3. With the s tandard 
results for g a m m a  distr ibutions (Abramowitz  & 
Stegun, 1972, chap. 26), the characteristic funct ion 
~O,.(y) and nth cumulant  K,., for # are given by 

~ , , ( y ) = ( 1 - i e y )  - ' /2  (17) 

and 

K,,,, = e"mF(n)/2.  (18) 

Inspection of (8), (13) and (14) shows that # is 
equal to the sum of m/2 identical ly distr ibuted ran- 
dom variables (#i) with mean  e and var iance e 2. 
Therefore, by the central l imit theorem, the probabil-  
ity density P , , (# )  is asymptot ical ly  normal  as m ~ ~ .  
For finite m, P , , (# )  is then approximate ly  normal  
with mean  era~2 and variance e2m/2. Denot ing  this 
approximat ion  by P , , (# )  we obtain 

Pm(5~)= (Trm)-l/2e-1 exp [-(5~-em/2)E/(e2m)].  

(19) 

The approximat ion  is compared with the exact 
density funct ion in Fig. 1 and the m a x i m u m  error is 
about 0.05 for m > 10. Asymptot ic  corrections to the 
normal  approximat ion  can be obtained by developing 
an Edgeworth series (Klug, 1958; Cramer,  1970) for 
P ( # ) .  Since subsequent  terms in such a series become 
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0.0 I I 
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~t 

Fig. 3. Cumulative distribution functions for intensities on a fiber 
diffraction pattern f/)r different values of m. The different curves 
are the exact distributions Q,,, (`9) ( ) and the normal approxi- 
mations (~"(`9) (---) .  
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increasingly complicated, only the first term is given 
here. Use of b'm3 given by (15) with the corrected 
('Edgeworth series') density denoted by/5m(5~) gives 

/3m(5~) =/3m(5~){1 + (x/2/ 3 )m -~/2 

x H3[e- ' (m/2)- ' /z( .~-em/2)]} (20) 

where H3(x )=x3-3x  is the third-order Hermite 
polynomial. This approximation is shown as the dot- 
ted line in Fig. 1 and is seen to be a significant 
improvement over the normal approximation, the 
maximum error being about 0.05 for m > 6. 

The normal approximation (19) can be used to 
derive an approximate normal cumulative distribu- 
tion function Q,,(5~) for 5~ given by 

O,,(~)=(1/2){ l+erf[( .~-em/2) / (em' /2)]}  (21) 
A 

where eft(x) is the error function. Q,,(5~) is compared 
with Qm(5 ~) in Fig. 3 and is seen to be a good approxi- 
mation. An improved approximation could be derived 
from the Edgeworth series (20) but its complexity 
compared with (16) would make it of little use. The 
normal approximation (19) can also be used to derive 
an approximation qJ,,(y) to the characteristic function 
given by 

~, , (y)=exp( iemy/2-eZmy2/4) .  (22) 

4. Amplitude distributions 

Using (9) and standard integrals (Gradshteyn & 
Ryzhik, 1980, equation 3.461), we may easily show 
that the nth moment c~,,, of ~d is given by 

a, , , ,=e"/2F(m/2+n/2) /F(m/2)  (23) 

so that the mean tz,, = c~,,~ is 

l~,,, = e' /ZF(m/2+ l12)/F(m/2).  (24) 

Using these results, we can write the variance and 
third central moment in the form 

2 2 (25) o',,=(em/2)-t~r,, 

and 

i,~,,,3= e[(1/2)-rn]l~,,,+21 ~3 . (26) 

Use of Stirling's expansion for the gamma function 
(Abramowitz & Stegun, 1972, equation 6.1.37) shows 
that the asymptotic behavior of the mean is 

Izm = ( Em/2)l/2[ 1 --(1/4)m -~ 

- (1 /8)m-2+O(m-3)]  m + m  (27) 

where O(x) denotes terms of order x and sufficient 
terms are given to obtain the leading term for the 
third central moment given below. Substitution of 
(27) into (25) and (26) gives the asymptotic 
expansions for o.~ and/~,,3 as 

2 o-, ,=(e/4)[l+(3/8)m-~+O(m-2)] r n ~  (28) 

and 

tz,,3=(1/8)2-1/2e3/2m-1/Z[l + O(m-1)] m+oo. (29) 

The exact values for p.,,,, o .2 and P-,.3, together with 
the leading term of their asymptotic expansions, are 
shown in Fig. 4. The leading terms are seen to be 
quite accurate, except in the case of the variance for 
very small values of m. 

Straightforward calculation shows that the cumula- 
tive distribution function for ~3 is 

Qm(~q)=[1/F(m/2)]y(m/2, q32/e) (30) 

which is shown as the solid lines in Fig. 5. The 
characteristic function for ~d, ~0m (y) can be calculated 
using a standard integral (Gradshteyn & Ryzhik, 
1980, equation 3.462.1) followed by application of 
the duplication formula for the gamma function 
(Abramowitz & Stegun, 1972, equation 6.1.18) giving 

~o,,,(y)= 2m121r-l12F(m/2+ 1/2) 

xD_,, ,[-i(elZ)' /Zy]exp(-ey218) (31) 

where D,,,(x) is the parabolic cylinder function 
(Abramowitz & Stegun, 1972, chap. 19). 
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Fig. 4. Mean, variance (xl0) and third central moment (x30) of 
~3 ( ) as a function of m together with their leading-order 
asymptotic expansions (---) .  
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Fig. 5. Cumulative distribution functions for amplitudes on a fiber 
diffraction pattern for different values of m. The different curves 
are the exact distributions Qm(q3)A ( ), and the normal 
approximations t~m(~d) ( - - - )  and Q'(~d) (...). 
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Since ~3 is not a sum of random variables, the 
central limit cannot be applied to its distribution 
directly. However, it can be shown (Appendix A) 
that P(~)  is asymptotically normal as m ~ ~ with 
mean (em/2) 1/2 and variance e/4. The normal 
approximation, denoted by P,,, (~), is therefore given 
by 

/3,,,(~3)= 2(2/"n')l/Ee-1 exp {-2[ (~--(em/2)l/212/e} 

m-~ oo. (32) 

This approximation is compared with the exact distri- 
bution in Fig. 2(a), and the maximum error is about 
0.14 for m > 6. Analysis of the asymptotic behavior 
of the third moment (Appendix A) shows that a 
correction to (32) in the form of the next term in the 
Edgeworth series is given by 

/3m(~) =/3m(~)(1 + (x/E/3)m -~/z 

× Ha{2e-l/2[~-(em/2)~/2]}). (33) 

This approximation is shown as the dotted lines in 
Fig. 2(a) and is seen to give a significant improvement 
over Pm(~), the maximum error being about 0.1 
for m>6 .  

The mean, variance and third central moment of 
the approximate densities given in (32) and (33) are 
the leading terms in their asymptotic expansions (27)- 
(29). At the cost of a slight increase in complexity, 
therefore, a more accurate normal density function 
for the amplitude is 

/3"(qd)=(27r)-~/2o'~ ~ e x p [ - ( ~ - / z , , ) 2 / 2 o  "2] (34) 

where/xm and o-m are given by (24) and (25) respec- 
tively. Similarly, from the exact expression (26) for 
the third central moment, a correction to (34) is given 
by 

'~'l ,a 

Pm( ~ ) =  P ' (  ~){1 + (/x~3/60 "3) 

x H3[(~3-/z~)/o',,]}. (35) 

These two approximations are shown in Fig. 2(b) and 
are improvements on the previous approximations 
(Fig. 2a),^the maximum errors being about 0.07 and 
0.02 for P ' ( ~ )  and/3"(~3), respectively. 

Using the Gaussian density function (32), we can 
obtain an approximate normal cumulative distribu- 
tion function for ~d as 

0 . , (~)  = (1/2)(1 +erf  {x/2e-l/2[ ~-(em/2)l/2]}), 
(36) 

and a slightly more complicated expression, denoted A!  

by Q,,,(~3), can be obtained by using (34) instead of 
(32). These approximations are shown in Fig. 5 and 
are seen to be quite accurate. The normal approxima- 
tion (32) can also be used to derive an approximate 
characteristic function ~,, (y) given by 

~,,(y)=exp[i(em/2)l/2y-ey2/8]. (37) 

It can be shown (Appendix B) that ~,,,(y) is the first 
term in the asymptotic expansion of q~,, (y) as m ~ ~.  
A more accurate approximate characteristic function 
could be derived by using (34) instead of (32). 

5. Normalization 

It is common in crystallography to use normalized 
structure factors Ehk ! = Fhkl/(F2hki)  1/2 and intensities 
IEhktl 2= Ihkt/(Ihkz) (Giacovazzo, 1980, chap. 1). This 
takes into account systematic variations in the struc- 
ture factors with resolution (through e), and in par- 
ticular zones. Similar normalizations may also be 
useful in fiber diffraction and are discussed here. 

The effect of e can be removed by defining a nor- 
malized amplitude ~ by ~ = ~ /e  ~/2 and a normalized 
intensity by ~2= 5/e .  The results obtained in the 
previous sections for ~3 and 5~ apply to ~ and ~2 by 
simply replacing e with unity in all the expressions 
(as was done in the examples). If this normalization 
is made in resolution shells, then the decline in struc- 
ture factors with resolution is removed. Another form 
of normalization is 

~= ~3/((g2)~/2=(E/em)l/2~ (38) 

or 

~2= 5~/(5~)= 2~/em. (39) 

This has the disadvantage that the normalization 
depends on m, but the advantage that 

(~2)= 1 (40) 

independently of m. This may be useful when con- 
sidering intensity distributions over the whole diffrac- 
tion pattern rather than for particular values of m. 
The probability density for ~ defined by (38), for 
example, is 

P,,,(~') = [2 /F(m/2) ] (m/2)" /2~  ''-~ 

x exp (-m~2/2).  (41) 

Any normalization applied to fiber diffraction ampli- 
tudes will probably depend on the specific application 
of intensity statistics. 

6. Discussion 

Although Figs. 1 and 2 provide an indication of the 
accuracy of the normal approximations to the distri- 
butions of amplitudes and intensities, the accuracy 
can be more succinctly summarized by examining the 
normalized r.m.s, error, E,,, defined by 

co 

E 2= ~ [P~(x)-P~(x)] 2 dx 
0 

x{0 E  x,J'dx} '  42, 
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where x is either q3 or o¢. These errors were calculated 
numerically for the different normal approximations 
to the probability density functions, and are shown 
in Fig. 6. They illustrate that, for P(~) ,  the error is 
modest for typical values of m. (The mean value of 
m is usually between about 4 and 8 for high-resolution 
studies - see below.) The errors are significantly lower 

At 
for tile approximation P,,,(~J) than for P,,(q3). 
Whether these errors are acceptable would depend 
on the specific application of the amplitude distribu- 
tions. The errors in the normal approximation to 
P,,,(~) are rather large, suggesting that in applications 
involving intensities one would probably have to use 
either the exact expression or the Edgeworth series 
approximation, whichever is more convenient. 

To further assess the significance of these errors, 
the values of m on typical fiber diffraction patterns 
must be considered. Since m depends on the position 
in reciprocal space, its overall effect can be estimated 
by considering its mean value over the diffraction 
pattern, (m), given by 

L 

(rn)=[1/(L+ l)]~, [.1/(Rmax-Rmi.) ] 
/ = 0  

Rmax 
x I m ( l , R )  d R  

Rmin 
( 4 3 )  

where re(l, R) denotes the value of m on layer line l 
at reciprocal-space cylindrical radius R, Rmi, and 
Rmax are the minimum and maximum values of R on 
layer line I between the minimum and maximum 
resolution limits of the diffraction data and L is the 
maximum layer-line number. The value of (m) 
depends on the molecular diameter and symmetry, 
the c repeat (c) and the resolution limits of the diffrac- 
tion data (Stubbs, 1989). The dependence of (m) on 
maximum resolution is shown in Fig. 7(a) for two 
structures; a nucleic acid (Park, Arnott, Chan- 
drasekaran, Millane & Campagnari 1987; diameter = 

20/~, c = 32.3 ]k, 101 helix symmetry and minimum 
resolution--20/~),  and tobacco mosaic virus (TMV; 
Namba & Stubbs, 1985; diameter = 180 ]k, c -- 69.0 A, 
493 helix symmetry and minimum resolution -- 10 A). 
These represent typical medium-sized and large 
molecules, respectively, studied by fiber diffraction, 
and Fig. 7(a) shows that (m) is typically between 4 
and 8 for high-resolution studies. The corresponding 
errors, E<,,,>, for these two structures are shown in 
Fig. 7(b). These show that for high-resolution studies, 
the normal approximations to Pro(G) are probably 
sufficiently accurate [particularly P '(q3)]  for many 
purposes. As noted above, normal approximations to 
P,,,(o¢) are not as accurate and should be used with 
caution. 

7. Concluding remarks 

A number of properties of the distributions of ampli- 
tudes and intensities on a fiber diffraction pattern 
have been derived. Probably the most significant 
result is that, for a particular m, the amplitudes and 
intensities are approximately normally distributed. 
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Fig. 6. Normalized r.m.s, error E,, for the normal approximations 
to the in tens i t i es /3  (5)  ( ), and the amplitudes P,, (~3) (- - -) 
and /3"(~d) ( . . . )  on a fiber diffraction pattern as a function 
of m. 
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Fig. 7. (a) The mean value of m, (m), and (b) the r.m.s, error, 
E<,,>, as a function of maximum resolution for the DNA ( ) 
and TMV ( - - - )  structures (see text). The different cu~es  in 
(b) re fe r to  the normal approximations (c) /3,,,(5), (d) P,,(q3), 
and (e) P ' (~J) .  



558 INTENSITY DISTRIBUTIONS IN FIBER DIFFRACTION 

The general simplifications that result when dealing 
with normal distributions may be useful in applica- 
tions of amplitude or intensity statistics. Since the 
utility of these approximations would probably result 
from their simplicity, the normal approximations 
(19), (32) and (34) may be more useful than the other 
more accurate, but more complex, approximations 
derived here. Although the Edgeworth series approxi- 
mations are more complicated than the exact 
expressions, they may be useful in some circum- 
stances because they take the form of a correction to 
a normal distribution. The examples presented indi- 
cate that the normal approximations may be 
sufficiently accurate (especially for the amplitudes) 
in practical applications. The other properties derived 
here may also be useful in specific applications. 

The analysis presented here indicates some limita- 
tions in the application of intensity statistics in fiber 
diffraction. Since the distributions are approximately 
normal for typical values of m, the shapes  of density 
or distribution curves are largely independent of m. 
Hence m probably cannot be reliably estimated from 
the shapes of the distributions (as can be done in 
traditional crystallography, for example, to distin- 
guish between centrosymmetric and non-centrosym- 
metric crystals). This is illustrated vividly in Fig. 5, 
which shows that the cumulative distribution func- 
tions for different m would superimpose almost 
exactly by changing the origin for qd. (The central 
limit theorem is 'a great equalizer'.) Fig. 3 shows that 
the intensities would be more effective than the ampli- 
tudes if attempting to do this. It may be possible, 
however, to estimate variations in m by examining 
the variation of the mean, variance or central 
moments over the diffraction pattern. (Note that the 
variance of the amplitude is not suitable for this 
purpose, however, as it is largely independent of m.) 
This could be useful in resolving ambiguities in sym- 
metry as discussed below. One would also have to 
consider limitations imposed by the small number of 
independent data on a fiber diffraction pattern that 
may make it difficult to obtain a statistically significant 
number of samples. 

Intensity distributions in fiber diffraction have been 
used to estimate largest likely R factors, and other 
applications are possible. These include estimation 
of atomic coordinate errors, and determination of 
symmetry. Although helix symmetry can usually be 
determined from the distribution of meridional reflec- 
tions, this is not always straightforward. Also, 
meridional reflections do not distinguish between 
integral and non-integral helices. Appropriate use of 
intensity statistics may help resolve some of these 
ambiguities by analyzing the variation of rn over the 
diffraction pattern. Some of the results derived here 
may also be useful in optimizing procedures such as 
isomorphous replacement and difference Fourier syn- 
thesis in fiber diffraction. The use of intensity statistics 

to phase fiber diffraction data is probably limited (as 
in protein crystallography), although it is possible 
that they could be used to supplement conventional 
phasing techniques. 

I am grateful to the US National Science Founda- 
tion for support (DMB-8606942) and Deb Zerth for 
word processing. 

From (8) 

APPENDIX A 
Normal approximation to P(~3) 

(m~2 )1/2 
q3 = 5~i (A.1) 

\ i=1 

and the random variable cg can be considered a func- 
tion of the m / 2  random variables ~i. Although it is 
assumed here that m is even, extension to odd m is 
straightforward. This function is expanded as a multi- 
dimensional Taylor series about the (m/2)- 
dimensional vector v of mean values of the 5~i giving 

m/2 

~= ~(v)+ Y [o~(v)lo:,](~,- v~'~)+R (A.2) 
i=1 

where the v ~) are the components ofv. The remainder 
term R is given by 

ra/2 rn/2 

R = ( 1 / 2 )  Y~ Z [a2~d(vo)laY, o:j] 
i=1 j=! 

x (,~, - v ~ i))(~.i - v~i)) ( A . 3 )  

where 

v o = ( v ( 1 ) ,  v C 2 ) , . . . , , ~ i , . . . , ~ j , . . . ,  v (" /2) ) ,  (A.4) 

the ~:i and ~ are the ith and jth components respec- 
tively of vo ,  and 

0 < v~)< > ~, sr~ <> 5~ > 0, (A.5) 

i.e. ~ and sr~ are between v ~i) and 5~, and all the 
quantities are positive. Since each 5~ has two degrees 
of freedom (m =2),  from (13) v ~)= e, and use of 
(A.1) to evaluate the partial derivatives in (A.2) gives 

m/2 

~ = ( e m / 2 ) l / 2 + ( 2 e m ) - ~ / 2  Y'. (5~ , -e )+R.  (A.6) 
i=1 

The first term in (A.6) is a constant and the second 
is a sum of identically distributed zero-mean random 
variables. By the central limit theorem therefore, the 
first two terms are normally distributed as m ~oo, 
with mean ( e m / 2 )  ~/2 and variance e/4. A similar 
evaluation of the remainder term gives 

rn/2 m/2 

R = - ( 1 / 8 )  ~'. Y'. [ ~ ( m - 2 + ~ i + ~ j ) / 2 ]  -3/2 
i=1 j=l 

x ( 5~, - e )( 5~j - e ). (A.7) 
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Since, from (A.5), ¢i, ~'j > 0, 

m/2 m/2 
[R l<(x /2 /4 ) [e (m-2 ) ] -3 /2  ~., ~ ( ~ i - e ) ( ~ s - e ) ,  

i=1 j=l 
(A.8) 

the last factor being the sum of  m2/4 zero-mean 
random variables.  The remainder  term is therefore 
normal ly  distr ibuted as m-> oo with zero mean  and a 
variance that is O(m-1).  Hence, R in (A.6) is insig- 
nificant compared  with the first two terms as m--> oo, 
so that ~d is normal ly  distr ibuted in the limit, with 
the mean  and variance given above. Analysis  of  the 
third central moment  of  the second term in (A.6) 
shows that its leading behavior  is (1/8)2-1/2e3/Em -1/2 
as m ---> oo. 

APPENDIX B 

Asymptotic behavior of ~ (y )  

The asymptot ic  behavior  of  the characteristic funct ion 
q~m(Y) for c~, given exactly by (31), as m --> oo is derived 
here. The asymptot ic  expansion for the parabol ic  
cyl inder  funct ion (Abramowitz  & Stegun, 1972, 
equat ion 19.9.1) shows that 

x/~ exp [ - ( m -  1/2)I/2x] 
D _ m ( x ) -  2m/2F(m/2+ 1/2) 

ix3 1 x 1 24ml/2 ~-O(rn -1) m ~ o o .  (B.1) 

Development  of the exponent ia l  as an asymptot ic  
series in m gives 

x/Tr exp ( -  ml/2x) 
D - m ( X ) - 2 m / 2 F ( m / 2 +  1/2) 

x [ l +4(1-x---6) m- ' /2+ O ( m - ' ) ]  

m--> oo. (B.2) 

Substitution of  (B.2) into (31) gives 

~0m(y) = exp[ i (em/2) l /2y]  exp ( - eyE~8) 

x [ 1  i e ' / 2 Y ( l + e y 2 ~  
-- 4-4-4-4-4-4-4-4-4-~ - - ~ /  m - 1 / 2 + O ( m - 1 ) ]  

m ---> oo (B.3) 

which gives the first two terms in the asymptot ic  series 
for q~(y). Compar i son  of  (B.3) with the approx imate  
characteristic funct ion (37) shows that the latter is 
the first term in the asymptot ic  expansion.  The 
coefficient of  m -1 /2  in (B.3) is related to the third- 
order Hermite  po lynomia l  in the Edgeworth series 
(33) for Pm(~d). 
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